Полимерные композиционные материалы

Большую группу представляют полимерные композиционные материалы (ПКМ) – композиционные материалы, матрицей в которых служит полимерный материал. Их применение дает значительный экономический эффект.

Формирование деталей из полимерных композиционных материалов может осуществляться как методами, присущими формованию изделий из полимеров (литье под давлением, прессование и др.), так и специальными методами (намотка и др.), свойственными только данному классу материалов.

Стеклопластики относятся к полимерным композиционным материалам, армированы стеклянными волокнами, формуемыми из расплавленного неорганического стекла. В качестве матрицы чаще используют термореактивные синтетические смолы (полиэфирные, фенольные, эпоксидные и др.), а также термопластические полимеры (полиамиды, полиэтилен, полистирол и др.).

стеклопластики

Эти материалы обладают достаточно высокой прочностью, низкой теплопроводностью, высокими электроизоляционными свойствами, прозрачностью для радиоволн. Стеклопластики – дешевые материалы из полимерного композиционного материала. Их применение оправдано в серийном и массовом производстве, судостроении, радиоэлектронике, строительстве, в изготовлении оконных рам для стеклопакетов, в автомобильном и железнодорожном транспорте и т.д.

Углепластики – это композиции из полимерной матрицы и упрочнителей в виде углеродных волокон (карбоволокон). Углеродные волокна получают из синтетических и природных волокон на основе целлюлозы, сополимеров акрилонитрила и др. Термическая обработка волокна проводится в три этапа: окисление (+220 °С), карбонизация (+1000…1500 °С), графитизация (+1800…3000 °С). При этом образуются волокна с содержанием углерода до 99,5% по массе.

В зависимости от режима обработки и исходного сырья полученное углеродное волокно имеет различную структуру.

углепластики

Для изготовления углепластиков используются те же матрицы, что и для стеклопластиков (чаще всего термореактивные и термопластичные полимеры).

Основными преимуществами углепластиков по сравнению со стеклопластиками являются их низкая плотность и более высокий модуль упругости. Углепластики – очень легкие и прочные материалы. Углеродные волокна и углепластики имеют практически нулевой коэффициент линейного расширения.

Все углепластики хорошо проводят электричество, имеют черный цвет, что несколько ограничивает области их применения. Углепластики используются в авиации, ракетостроении, машиностроении, производстве космической техники, медицинской техники, протезов, при изготовлении легких велосипедов и другого спортивного инвентаря.

На основе углеродных волокон и углеродной матрицы создают композиционные углеграфитовые материалы – наиболее термостойкие композиционные материалы (углепластики), способные долго выдерживать температуры до +3000 °С в инертных или восстановительных средах.

углепластики

Углеродные волокна пропитывают фенолформальдегидной смолой, подвергая затем действию высоких температур (+2000 °С), при этом происходит пиролиз органических веществ и образуется углерод. Чтобы материал был менее пористым и более плотным, операцию повторяют несколько раз.

Другой способ получения углеродного материала состоит в прокаливании обычного графита при высоких температурах в атмосфере метана. Мелкодисперсный углерод, образующийся при пиролизе метана, закрывает все поры в структуре графита. Плотность такого материала увеличивается по сравнению с плотностью графита в полтора раза.

Из углепластиков делают высокотемпературные узлы ракетной техники и скоростных самолетов, тормозные колодки и диски для скоростных самолетов и многоразовых космических кораблей, электротермическое оборудование.

Боропластики – это композиции из полимерного связующего и упрочнителя – борных волокон. Для получения бороволокнитов применяют модифицированные эпоксидные и полиамидные связующие. Волокна могут быть как в виде мононитей, так и в виде жгутов, оплетенных вспомогательной стеклянной нитью, или лент, в которых борные нити переплетены с другими нитями.

боропластики

Благодаря большой твердости нитей материал обладает высокими механическими свойствами и большой стойкостью к агрессивным условиям. Бороволокниты имеют высокие прочность при сжатии, сдвиге, твердость, тепло- и электропроводность. Однако высокая хрупкость материала затрудняет их обработку и накладывает ограничения на форму изделий из боропластиков.

Боропластики используются главным образом в авиационной и космической технике для изготовления деталей, подвергающихся длительным нагрузкам в условиях агрессивной среды. Стоимость борных волокон очень высока в связи с особенностями технологии их получения.

ЧИТАЙТЕ ДАЛЕЕ: